资讯中心
当前位置:  首页 通知公告 统计学术讲座:Asymptotic Uncertainty of False Discovery Proportion(江源)
统计学术讲座:Asymptotic Uncertainty of False Discovery Proportion(江源)
2024年12月11日

 报告题目:Asymptotic Uncertainty of False Discovery Proportion(FDP的渐近不确定性)

 报 告 人:江源

 报告时间:2024年12月13日(周五)9:30-11:00

 报告地点:劝学楼430

 主办单位:东北财经大学统计学院

 【报告摘要】

 中文摘要:多重检验一直是统计学研究中的一个重要课题。尽管在这一领域已有大量研究,但控制假阳性发现仍然是一个具有挑战性的问题,尤其是当检验统计量之间存在依赖性时。针对检验统计量之间任意依赖性的情况,已有多种方法被提出用于估计假阳性发现比例(False Discovery Proportion,FDP)。其中一种关键方法是将任意依赖性转化为弱依赖性,并在此基础上建立FDP和假阳性发现率(False Discovery Rate,FDR)在弱依赖下的强一致性。因此,在弱依赖框架下,FDP会收敛到相同的渐近极限。然而,尽管检验统计量之间仅存在弱依赖性,其FDP的渐近方差仍然会受到依赖结构的显著影响。量化这种变异性具有重要的实际意义,因为它可以作为从数据中估计FDP质量的一个指标。关于这一方面的研究在文献中仍然较为有限。本研究旨在填补这一空白,通过量化FDP的变异性,假设检验统计量之间存在弱依赖性且遵循正态分布。首先推导出FDP的渐近展开式,并进一步探讨不同依赖结构如何影响FDP的渐近方差。在此研究的启示基础上,建议在使用FDP的多重检验程序中,报告FDP的均值和方差估计,以便对研究结果进行更全面的评估。

 英文摘要:Multiple testing has been a prominent topic in statistical research. Despite extensive work in this area, controlling false discoveries remains a challenging task, especially when the test statistics exhibit dependence. Various methods have been proposed to estimate the false discovery proportion (FDP) under arbitrary dependencies among the test statistics. One key approach is to transform arbitrary dependence into weak dependence and subsequently establish the strong consistency of FDP and false discovery rate (FDR) under weak dependence. As a result, FDPs converge to the same asymptotic limit within the framework of weak dependence. However, we have observed that the asymptotic variance of FDP can be significantly influenced by the dependence structure of the test statistics, even when they exhibit only weak dependence. Quantifying this variability is of great practical importance, as it serves as an indicator of the quality of FDP estimation from the data. To the best of our knowledge, there is limited research on this aspect in the literature. In this paper, we aim to fill in this gap by quantifying the variation of FDP, assuming that the test statistics exhibit weak dependence and follow normal distributions. We begin by deriving the asymptotic expansion of the FDP and subsequently investigate how the asymptotic variance of the FDP is influenced by different dependence structures. Based on the insights gained from this study, we recommend that in multiple testing procedures utilizing FDP, reporting both the mean and variance estimates of FDP can provide a more comprehensive assessment of the study's outcomes.

 【报告人简介】

 江源博士目前是俄勒冈州立大学统计学系副教授以及研究生委员会联席主任。2008年毕业于威斯康星大学麦迪逊分校(UW-Madison),获统计学博士学位。2008年至2011年,在耶鲁大学公共健康学院从事博士后研究;2011年加入俄勒冈州立大学统计系工作;2017年晋升为副教授。现为American Statistical Association (ASA)会员,Institute of Mathematical Statistics (IMS)会员,International Chinese Statistical Association (ICSA)会员,International Genetic Epidemiology Society (IGES) 会员。研究方向包括数据整合、变量选择、多重检验、网络数据分析和统计遗传学等领域。在统计学顶级学术期刊上发表了超过40篇论文,包括Journal of the American Statistical Association、Biometrika、Biometrics、Journal of Computational and Graphical Statistics、Statistics in Medicine等。

 

撰稿:肖潇      审核:徐强      单位:统计学院